[!--title--]

来源 :数学学习与研究 | 被引量 : [!--cite_num--]次 | 上传用户:[!--user--]
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
[!--newstext--]
其他文献
【摘要】空间观念是小学数学课程标准的核心概念之一.笔者尝试将具身认知与图形学习有机结合,通过营造具身之境,开展具身活动,建构具身认知,创意具身评价,促进学习过程的渐进,完成学习意义的建构,从而有效发展学生的空间观念.  【关键词】具身;认知;空间观念  空间观念是小学数学课程标准的核心概念之一,是儿童认识、研究实物和感知理解生存空间的重要基础.它主要指根据物体特征抽象出几何图形,根据几何图形想象出
【摘要】在高中数学解题中,一个题目不止一个答案,一个题目不止一种解法是普遍存在的现象,这就需要在解题中,合理利用分类思想,在分类中各个击破,有效解题.所以,分类思想应用到高中数学的解题教学中,就有着很大的必要.因此,本文立足于高中数学的解题教学,探究分类思想在高中数学解题教学中的应用,以期对高中生的数学解题和课堂教学提供有效帮助.  【关键词】分类;解题;题型;合作  在高中数学的解题中,分类思想
【摘要】小学数学是一门集抽象性、规律性为一体的学科,对学生的思维水平提出了一定的要求.从低年级的学生通过掰手指头、拨动算盘数数,到中年级的学生通过列竖式进行计算,随着学生年龄的增长,每一个阶段都有对应的解题方式.而到了高年级,数学知识以抽象、复杂等特点为主,实践应用题的类型偏多,对学生的抽象思维能力也提出了更高的要求,因而教师需要结合学生的实际情况,教授学生一些更符合实际,更便捷的解题方法,以全面
江苏数学高考中圆的方程每年都有所涉及,是C级考点,其中一类题目的条件中没有直接给出圆的方程,但是却隐藏在题目中,需要通过分析和转化去发现圆,将题目中特定的条件化“隐性”为“显性”,进而利用圆的知识解决问题,此类问题便是“隐形圆”问题.其中涉及“隐形圆”的高考题可参考:2017年第13题、2016年第19题、2013年第17题等.本文以最新的高考及模拟题为例,总结了部分“隐形圆”的解题策略.  策略
【摘要】数学课程虽然抽象单调,但却是学生成长中不可缺少的推动力.学好数学是学生成长成才和提高社会适应能力的重要条件.小学阶段是数学学习的奠基期,也是培养学生学习能力的一个关键期.小学数学学习应该是一个积极主动及个性化鲜明的实践过程,要让学生从学会过渡到会学,并利用这样的转变提高学生的学习能力,满足学生终身发展的要求.因此,小学数学教师要建立教学改革意识,通过完善学生多元数学学习能力,让学生顺利完成
【摘要】《长、正方体的展开图》是苏教版六年级下册第一单元的教学内容,本文呈现了一个较为详细的教学设计,展示了完整的教学过程实录,并围绕“创想”探讨了从“结构化”想象到“结构化”操作的活动经验积累对深度培养学生空间观念的几点尝试及收获的效果.  【关键词】创造;想象;结构化;空间观念  教学内容:长方体、正方体展开图例题教学及相关练习.  教学过程:  一、正方体的展开图  1.揭示正方体的展开图 
【摘要】发现是人类对于自我的内在的、具体性的自然及其整体的认识或再创造.小学数学中的发现学习(简称“发现数学”)是从学生的认知水平和已有经验出发,创设适合学生主动发现的问题情境,提供利于学生主动发现的探究活动,通过观察比较、猜想实验、归纳内化等学习活动,促使学生主动获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验的学习方式.本文以义务教育教科书苏教版三年级下册“
【摘要】《角的度量》一课教学,教师借助学生已有的知识经验,以回顾度量长度和面积的方法为开篇,通过分层设计量角活动,让学生在实际测量的需求中,经历创造量角器模型的过程、认识度量角的本质,从而自主建构运用量角器度量角度的认知结构,形成技能.  【关键词】度量本质;度量经验;建构模型;量角器使用  我们知道,度量的本质是将事物的某些属性标准化,再通过测量赋予事物该属性一个量值,从而对同一维度上事物的该属
【摘要】体验学习是指在教学中教师根据预定的教学内容和目标,让学生置身于一定的学习情境,引导学生在此种情境中体验“再创造”.在实践过程中,不仅要让学生学会“做数学”,还要学会“用数学”,让学生懂得在实践中体会与思考.显著提升学生的专业素养,丰富学生的精神世界.  【关键词】体验学习;再创造;做数学;说数学;用数学  在《全日制义务教育数学课程标准(2011年版)》这本书中,我们可以清楚地看到:“让学
【摘要】在新一轮数学课程改革中,专家学者提醒一线教师:数学教学需要凸显所教内容的数学本质[1-2].为此,许多学者、老师对如何在数学教学中体现数学本质进行了研究.在这一方面,江苏省人民教育家培养对象、全国著名数学特级教师徐斌创造的“无痕教育”在课堂上润物无声地将数学本质呈现给学生,值得学界研究、探讨[3-4].本文以徐老师的“解决问题的策略”一课为例,探究其中体现的教学策略.  【关键词】课程改革