分次代数相关论文
文章对于具有Grobner基理论的N-分次K-代数R上多项式环R[t]和自由代数K的理想分别引入了dh-闭齐次Grobner基以及dh-闭分次理想的概......
学位
Koszul代数是一类非常重要的代数,它在表示论及其相关领域的研究中扮演着重要的角色.而代数的Koszul性和分配性之间又有着密切的联......
这篇硕士论文主要是围绕twist等价与Calabi-Yau代数展开的.最近,M.Reyes,D.Rogalski和J.J.Zhang通过群代数及Hopf作用,给出了对于代数......
该硕士论文主要通过引进箭图上的箭向函数,顶点分次模等概念,对所有模均可分次的有限维路代数进行了完整的刻划,给出了满足此性质......
循环同调在八十年代同时出现在几个数学领域.Alain Connes为了研究非交换Banach代数的指数定理将de Rham上同调推广为循环同调.B.T......
本文主要讨论一类具有non—pure分解的分次代数,称之为bi—Koszul代数.一个代数具有pure分解指在该代数的平凡模的极小投射分解中,每......
In this paper, we define fusions on block extensions and partially extend some results of Puig on block fusion.Our main ......
本文给出K-代数A上一种较为广泛的阶滤子,在此滤子下运用Groebner基理论,给出了A和两个分次代数9rC(A)与A的关系.......
运用Groebner基理论,给出了K-代数A在阶滤子下和两个分次代数grC(A)与的算法关系....
设G为一个有限群,A=■g∈GAg为一个G分次代数.设L为ModAe的一个局部化子范畴,则有L诱导的GrModGA的局部化子范畴LG,以及阿贝尔范畴......
将前人关于连通分次代数的一些结论推广到零阶部分为Artin半单环的正分次代数上.主要讨论了一般正分次代数为Gorenstein代数与它的......
本文讨论了群分次代数A与其Smash PropductA#G的循环同调群之间的关系,并且在A分别是有限分次,强分次,以及非负分次的情形下刻划两者内在联系的结论。......
本文针对可解多项式代数A,应用Groebner基理论,给出其在Weyl代数上的应用....
本文讨论了分次模范畴等价的两个分次代数的循环同调群之间的关系以及范畴gr-R,GR-R上的分次循环同调的形式。......
研究了当q为偶数次本原单位根时,量子群Uq(sl2)在关系K2r=1,Emr=0,Fmr=0下的商代数Uq(m,n)的构造,给出Uq(m,n)的Hopf代数结构和分次......
给出了分次弱胞腔代数定义,并利用J.Graham and G.Lehrer介绍的胞腔代数理论来讨论了分次弱胞腔代数的表示理论。......
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们......
论文通过引进箭图上的箭向函数和顶点可分模的概念,对任意模均可分次的路代数进行了完整的刻划,并给出了相应的一些等价条件。本文还......
针对可解多项式代数A,证明了它在阶滤子下两种分次代数grC(A)与均为可解多项式代数.应用Groebner基理论,给出了其左理想L和grC(L)......
首先将向量空间上的多项式函数概念扩展到无挠交换群上,并自然地引出可去集的概念。以类比代数几何中的代数集.接着提炼出一类非常一......