有理插值样条相关论文
本文对参数曲线曲面造型中的一种新的几何造型方法--非线性样条曲线曲面造型进行了深入的研究。其中包括基于三角/双曲多项式的类二......
作为CAGD中曲线曲面造型的重要工具,有理样条插值方法被广泛应用于几何造型中。与传统多项式样条方法相比,有理方法灵动性强,易实现区......
回归分析是数理统计学的重要内容之一。由于它的应用非常广泛,所以关于它的理论与方法研究一直受到人们的关注。我们针对非线性回......
重心有理插值在整个插值区间上具有足够的光滑性、不存在极点,且具有很高的逼近阶.首先基于给定权构造的重心有理插值来计算导数的......
在原有研究的基础上,讨论函数y=ex在[0,1]上的有理插值样条的存在性和惟一性,并利用Sylvester恒等式得到P[L,M]和Q[L,M]的(* * *)......
本文提出一种构造C1保单调的有理三次插值函数的方法,所构造的插值函数分子分母都是三次多项式.由于函数表达式中含有调节参数,这......
重心有理插值在整个插值区间上具有足够的光滑性、不存在极点,且具有很高的逼近阶。首先基于给定的权构造的重心有理插值来计算导......
非线性回归问题的近似解法,通常采用Gauss-Newton迭代法。鉴于非线性回归问题的特点,用有理插值函数逼近方法也得到了较好的结果。文......
文章构造了一类具有线性分母的二次Hermite有理插值样条,它在插值区间上C^1连续并且对一次多项式精确成立;讨论了在内节点和半节点二......