锂离子电池硅负极粘结剂的功能化可控制备及特性研究

来源 :浙江大学 | 被引量 : 0次 | 上传用户:wdasheng
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
硅(Si)被认为是最有前景的锂离子电池负极材料之一。硅的关键问题可以归结为在嵌脱锂过程中剧烈的体积变化(300%)导致粘结失效,破坏电极结构的完整性,导致电接触失效,从而阻碍了硅负极的商业化。粘结剂设计是最有前景的解决策略之一,粘结剂对于保持电极和导电网络的机械完整性至关重要。传统的油溶性聚偏二氟乙烯(PVDF)粘结剂和水性的丁苯橡胶(SBR)/羧甲基纤维素钠(CMC)乳液不能适应这一体积变化,因此通过功能化设计开发一种高效的粘结剂是实现硅材料商业化的关键。粘结剂溶液对Si的亲和性是实现粘结能力提高的关键。因此,我们提出乙醇胺上的胺基与聚丙烯酸(PAA)上的羧基-COOH反应形成酰胺键-CONH-,提高粘结剂对硅材料的润湿性进而提高粘结强度。此外,适应硅的体积变化需要粘结剂实现粘结性能和机械性能的平衡。因此,我们提出将淀粉与合成高分子共混,增加淀粉分子链段的柔性,实现粘结性能和机械性能的平衡。具体工作如下:(1)PAA是一种水溶性高分子聚合物,其表面的羧基与Si表面的硅醇基形成强氢键作用,相比于已商业化的CMC,PAA能更均一地包覆在Si表面,表现出更优越的力学性能,因此被认为是极具商业化前景的粘结剂之一。但PAA对硅材料的润湿性的提高未曾被研究。基于此,提出以聚丙烯酸为主体,将乙醇胺分子中的胺基-NH2在加热条件下与PAA上的-COOH进行反应,将酰胺键-CONH-引入PAA主链中,通过观察粘结剂溶液对Si片的接触角表明,引入酰胺键促进了粘结剂溶液对Si的润湿能力,剥离测试表明改性后的粘结剂粘结性能得到较大提升。将其应用于硅负极,得到了较好的循环性能,循环前后的扫描电镜(SEM)图像也记录了粘结强度的提高。(2)支链淀粉由丰富的细支链和长聚合物链组成,结构中富含羟基,能与Si颗粒形成氢键相互作用,因此也具有一定的应用前景。但其分子内氢键的作用,导致分子链柔性差,干燥后的淀粉胶膜结晶度高,脆性大。基于此,提出通过丙烯酸和丙烯酰胺共聚反应将支链淀粉与丙烯酸-丙烯酰胺共聚物以及聚乙烯醇共混,增加淀粉分子链段的柔性,抑制支链淀粉胶膜的破坏,进而实现粘结性能和机械性能的平衡。剥离实验和X射线光电子能谱XPS测试表明合成的粘结剂与Si之间的相互作用增强,弯曲实验表明机械性能得到了提升。将其应用于硅负极,得到了较好的循环性能,循环前后的SEM图像也表明了极片结构的完整性得到了保持。
其他文献
生物基聚2,5-呋喃二甲酸乙二醇酯(PEF)具有高玻璃化温度、机械强度及气体阻隔性,在工程材料及食品包装等领域应用前景广阔。但PEF的拉伸韧性差、抗冲击强度低,并且在合成过程中易发生醚化副反应生成2,5-呋喃二甲酸二甘醇酯链节(DF)。近年来致力于改善PEF韧性的研究工作往往以共聚改性为主,但通常需添加高含量的共聚单体才实现明显的增韧效果,并产生增韧后玻璃化温度(Tg)、机械强度和气体阻隔性大幅下
学位
DL-蛋氨酸作为“必需氨基酸”之一,是重要的动物营养添加剂。结晶得到的DL-蛋氨酸多为鳞片或粉末状,形貌差、堆密度低,严重影响其质量和后续工艺效率。本文关注蛋氨酸的晶习调节,采用分子模拟技术进行添加剂筛选并对其调控效果进行实验验证,进而展开蛋氨酸间歇冷却结晶过程中添加剂的作用机理研究。首先运用Material Studio软件建立分子模型,进行DL-蛋氨酸晶面特征、添加剂与晶面作用的分析,以蛋氨酸
学位
分离纯化作为化工过程中最重要的过程之一,其中非极性气体以其高度相似的物理化学性质使得其高效分离成为目前工业上极具挑战力的难题。基于多孔材料的吸附分离技术是深冷精馏分离的补充或替代手段,在分离该化合物体系具有绿色、节能、高效等特点。金属-有机框架(MOFs)材料因其高度有序性、单元结构可设计性以及孔径尺寸精准可调控性等特点使其成为吸附分离领域研究的重点,而高热/化学稳定性差以及制备成本高等缺点极大地
学位
锂硫电池技术的高理论容量(1672 mA h g-1)比目前应用于锂离子电池的过渡金属氧化物阴极高出6倍,这使得它在运输与储能系统方面具有强大的吸引力,除此以外,锂硫电池还能提供较高的理论能量密度(2567 W h kg-1)。然而,每一项技术都有其缺陷,对于锂硫电池来说也是如此。尽管锂硫电池有着明显优势和良好的前景,目前仍存在一些问题阻碍了其实际应用,如硫的绝缘性能、硫变成硫化锂时的大体积膨胀、
学位
绩效管理作为一种崭新的管理理念和管理模式,是政府创新管理模式的重要举措之一。当前,从党中央、国务院、各级政府到税务总局,绩效管理一直扮演着重要角色,并在不断推动税收治理体系和治理能力现代化的进程中发挥着不可缺少的作用。2014年,国家税务总局正式在全税务系统推进开展绩效管理工作,这10多年来通过深入、广泛的开展税务绩效管理,税务绩效管理已成为税务机关加强各方面管理工作的重要着力点。但是随着实践的证
学位
期刊
乙烯、丙烯等低碳烯烃是重要的有机化工原料,全球范围内低碳烯烃的需求量近年来正逐年增加。目前,低碳烯烃主要以石油等化石燃料为原料制得,期间不可避免地产生大量二氧化碳(CO2)排放。以CO2作为碳源,通过加氢将其转化为低碳烯烃不仅可以减少温室气体排放,也符合我国当前的“双碳”战略。CO2加氢制备低碳烯烃的催化剂可以分为以CO为中间体的费托合成Fe基催化剂,以及以CH3OH为中间体的金属氧化物-分子筛双
学位
芳烃的氧化是许多工业生产中的关键反应,其产物是许多工业过程中的重要原料。以苯乙酮为例,它在香料、药品、树脂、催泪瓦斯等化工领域的生产中发挥着极为重要的作用。传统上多使用有毒的强氧化剂,如KMnO4、HNO3,但其使用成本高,产生的有毒废料多,违背绿色化学的理念。为了解决这个痛点,人们将目光转向了绿色催化氧化过程,致力于开发高效的非均相催化剂。研究表明,金属基催化剂可以在温和条件下对烷烃进行sp3
学位
为真正实现可持续的碳循环,直接使用间歇性可再生能源进行电化学CO2还原(CO2RR)大规模生产燃料和高附加值化合物是最为清洁的路径之一。尽管前景十分诱人,CO2RR仍面临着的主要挑战是CO2分子中相当惰性的碳氧双键(806 kJ mol-1),注定反应要经历漫长且复杂的基元步骤。其中,两个关键因素决定了整个过程的效率:电子,作为“燃料”携带电驱动力;质子,作为“钥匙”进攻O原子并解锁C=O键。碳基
学位
当前,火电机组和工业锅炉燃煤造成的湿烟羽排放对环境的影响受到了广泛关注。目前的湿烟羽治理技术虽然有一定的效果,但对其中的余热和水资源回收率较低。在当前节能减排的大环境下,如何高效回收湿烟气中的热能和水分成为治理湿烟羽的新思路。本文基于离子风强化传热原理和电除雾原理,采用线筒式电晕放电结构,通过自行设计的套管式换热器,以水为冷却介质,开展了电晕放电在干空气和湿空气环境下的强化传热实验研究,以及在湿空
学位