LAPLACE算子相关论文
1984年,O.Hald首先考虑了带一个跳跃间断点的Sturm-Liouville半逆问题,指出一组谱和一半势函数可以确定所有势函数以及跳跃信息.此......
本文主要分为两个部分.在§2中,我们研究半直线上具有转移条件的周期势的反谱问题.我们首先利用间断点处的转移条件得到该问题的We......
流形上微分算子特征值问题的研究,已成为流形上分析的重要课题,在数学物理等学科中有着广泛的应用.设Ω是n维Riemann流形Mn上的有......
特征值问题是微分几何和几何分析领域的一个重要研究课题,也是一个热点问题,其研究受到国内外数学家的广泛关注.本文研究了欧氏空......
流形上微分算子的特征值问题的研究,现在已成为流形上分析的前沿课题之一,在数学物理等学科中有着广泛的应用.设Ω是n维欧氏空间R......
流形上微分算子的特征值问题是微分几何与几何分析研究领域的一个重要课题,也是一个热点问题,其研究受到国内外数学家的广泛关注.......
上世纪60年代数学家们对黎曼流形上的微分算子特别是Laplace算子的特征值问题的研究得出了许多有用的结论,其中以1966年M. Kac得到......
在微分几何中,Laplace算子在调和积分理论和Bochner技巧中起着重要的作用.近二十年来,在著名的几何学家陈省生先生的倡导下,实和复......
低照度图像一般是在环境亮度低、背对光源等情况下获取的图像,这种类别的图像存在对比度低、噪声大、图像失真和视觉效果差等特点......
本文将奇点理论和非线性分析方法相结合,应用到无限维Banach空间中的分歧理论中去,主要研究单参数非线性分歧理论中分歧点的判定与......
本文研究某些子流形几何和特征值问题,内容分为四个部分.第一部分研究局部对称空间中极小子流形的刚性定理Yau S T在文献[1]中研究......
B型超声诊断由于其具有无损、无痛、廉价、方便等优点被广泛应用于医学领域,但是由于成像原理中存在的问题,其成像质量仍需要借助......
随着数字图像和视频的广泛应用,数字图像质量评价的重要性日益增长。图像质量评价是图像处理领域的一个基础性的问题,它既有其重要......
本文我们研究具紧群作用的C~*-代数上的Riemann度量及其性质.在第一章中我们给出了本文的研究背景及一些常用的基本概念和结论.在......
共形空间中类空超曲面的pinching问题是几何分析研究领域的一类重要研究课题.本文对共形空间中类空超曲面上某些重要共形量的Lapla......
流形上微分算子的特征值问题的研究,经过几十年的探索现已成为流形上分析的前沿课题之一,在数学,物理,金融等学科都有着广泛的应用......
本文我们研究紧致Hausdorff空间上复值连续函数全体构成的C*-代数C(X)上的Riemann度量及其性质.在第一章中我们给出了文章的背景介......
本文内容由六个章节组成.首先是引言部分;第一章介绍了Finsler流形上各种重要的几何量;在第二章引进了Finsler流形上两种重要的Laplac......
本文我们主要证明全空间Rn上分数阶方程组此处为公式等价于下面的积分方程组此处为公式其中0<α<2,p,q>1,G(X,y)是Rn中关于分数阶Lapl......
【摘要】 本文从Riemann几何的角度,推導出了三维欧式空间中的Laplace算子在不同坐标系下的具体表达式。相比于常用的推导过程,这种......
本文讨论了在反de Sitter空间H2n+11中浸入曲面的接触角和全纯角的一些性质.全文共分两章. 第一章对以前学者在接触角方面的工......
本文首先主要建立了时标上的△▽椭圆型方程的最大值原理:当x∈Λkk时,若有∑n i=1 u△i▽i≥0,且u在DT内取到最大值M,则有u≡M,并......
在许多实际问题,如股票价格,随机分析,液体粒子的非正常扩散等,人们用于描述其动力学行为的模型通常采用非局部偏微分方程.考虑非......
本文中,我们利用Moser迭代的技术分别对两类问题进行了讨论.在第三章,我们将给出具有小负曲率的流形上Laplace算子的第一特征值的......
本文着重研究流形上Laplace-Beltrami算子特征值的混合边值问题与子流形的刚性问题。 1968年,J.Simons研究了n+p维单位球面Sn+p......
用概率方法研究无穷维流形上的分析与几何是近十几年来随机分析的热门领域之一.该文探讨了Riemann流形的等距映射到轨道空间和构形......
在本文中,我们主要通过谱研究了Sn+1(1)中的紧致极小超曲面和Sn+1(1)中的Clifford极小超曲面之间的关系,以及单位切球丛T1M与它的底......
本文研究了椭圆型方程中两类p阶Laplace方程的解的存在性和多解性。在第二章中,通过构造局部环绕,证明了Dirichlet问题:-△pu=a(x)|u|......
欧氏空间Rn上的分数阶Laplace算子(-△Rn)γ,γ∈(0,1),在调和分析及随机偏微分方程中已有广泛的研究.但由于(-△Rn)γ是非局部的算子,所......
本文主要讨论Yamabe流上Laplace算子特征值的单调性和Yamalbe流上热方程的σ正定性与梯度估计. 首先,考虑了Yamalbe流上Laplace算......
本文着重研究黎曼子流形上整体几何与几何分析的若干问题,主要内容包括子流形的同调群消没定理、拓扑球面定理、L调和1-形式、端的......
本文主要研究Dai等人提出的加权Koch网络和Zhang等人提出的Koch网络的分形维数、重分形性质以及Laplace特征值。加权Koch网络是在K......
线弹性方程是许多实际力学应用问题的基本方程,有限元方法是数值求解该方程最常用的离散方法,但要精细地求解相应的离散化代数系统还......
本综述报告综述了紧致Riemann流形上LaPlace算子△的第一特征值的下界估计的历史,其中对一些定理与结论,报告作了证明与解析。......
众所周知,同调代数是一门重要的数学分支。在群论,交换代数,代数拓扑,代数几何,微分几何,微分拓扑,代数数论以及偏微分方程等学科领域都可......
该不等式不依赖于区域Ω.我们的结果改进了陈祖墀和钱春林在文献[14]中的结论.
......
非线性泛函分析具有比较完整的理论体系,不仅可以灵活的应用于工程学,物理学,控制论等应用学科中,而且能够很好的描述自然界中许多重要......
随机偏微分方程和非局部偏微分方程的研究近期越来越受到人们的重视。随机偏微分方程和非局部偏微分方程分别来自于受到随机影响和......
定义在区域Ω∈C上的2p次连续可微复值函数F=u+iv是p-调和的当且仅当F满足p-调和方程ΔPF=0,其中△表示Laplace算子.如果log F是p-......
本文利用电网络理论和图能量的方法,在两种特殊的Sierpinski垫片上展开讨论。证明了修改的Sierpinski垫片是个p.c.f.自相似结构,给......
临界点理论中的变分法是自然界中的一条普遍方法,它将自然界中的大量的问题都归结为某一泛函在一定条件下的临界点的问题,具p(t)-Lap......
本文主要介绍了两种带变指数Laplace算子的二阶Hamilton系统,分别是带p(t)-Laplace算子和带(q(t),p(t)-Laplace算子的二阶Hamilton系......
Mandelbrot引入分形后,人们主要研究了分形的”静态”性质,如分形的测度、维数等.但为了解释一些物理现象,人们要研究分形的”动态”......
在这篇论文中,我们研究环面凯莱流形上Laplace-Beltrami算子△的等变特征值。具体来说,对任何环面群Tn的整数权α,我们考虑算子△在环......
等周不等式是最古老最优美的几何不等式,很多数学家给出了不同的证明,等周不等式是连接几何与分析的一个桥梁.一方面,它与分析中著名......