算子代数相关论文
本文主要研究算子代数的局部(a,β)导子与(α,β)导子的之间的关系.全文共分五节.第一节是引言和预备知识.第二节证明了矩阵代数Mn(C)到......
本文从范畴论的角度研究了罗巴代数,微分代数和叶形代数.罗巴算子和微分算子分别是积分和微分的代数抽象和推广.为了反映积分和微......
可加或线性交换映射与斜交换映射是算子理论与算子代数中重要的映射之一,他们的结构性质已被许多学者进行了研究.本文主要研究算子......
算子代数理论产生于20世纪30年代,随着这一学科的迅速发展,它已成为现代数学中的一个热门分支,它与量子力学,非交换几何,线型系统和控制......
算子代数上保持某种性质,子集,函数或关系等不变量的映射的刻画问题即是所谓的算子代数上的保持问题,保持问题是算子代数和泛函分析上......
本文刻画了算子代数上的一些线性映射.我们所研究的映射包括:左导子,Jordan左导子,(m,n)-Jordan导子,广义导子以及广义Jordan导子;我们......
本文主要讨论了算子代数上一些映射的局部性.涉及的代数主要包括von Neumann代数、矩阵代数、三角代数以及Hilbert C*-模上的算子......
该文考虑Pontrjagin空间上的算子代数,讨论了退化算子代数的分类问题;算子代数理想的对称性问题;算子代数的导子问题以及算子代数......
高阶导子和Lie导子是算子代数上两类非常重要的映射,受到了许多数学工作者的广泛关注.本文我们将对它们做进一步的探讨和研究. ......
导子和Jordan导子是算子代数和算子理论中比较活跃的、有着重要的理论价值和应用价值的研究课题.近年来越来越多的学者关注于讨论......
学位
本文首先在Bresar和Semrl等结论的基础上进一步在von Neumann代数中的任意套对应的套子代数上研究了作用在幂等元上分别是Jor......
设X是数域F(F为实数域R或复数域C)上的Banach空间,H是无限维Hilbert空间,本文讨论了X上幂等算子的表示形式及H上幂等算子与投影算子......
本文通过引入Ka算子及第二Kato谱σk(T),证明了σk(T)是C中包含于σ(T)的紧集.后面两章结合Banach空间结构理论中G-M系列成果对Bana......
Jordan导子和中心化子是算子代数和算子理论中两类非常重要的映射,受到了许多学者的广泛关注.本文我们将对它们做进一步的探讨和研......
本文讨论如何利用可加映射的局部性质刻画三角环上的导子的问题,并应用于某些算子代数.设u=Tri(A,M,(B))是一个三角环,G∈u.对任意的X,Y∈......
C*-代数自由积是由D.Avitzour与D.V.Voiculescu在上世纪八十年代几乎同时独立定义的,目前已成为算子代数理论中的重要研究对象之一.......
全文分为三章.第一章主要证明了vonNeumann代数上的局部3-上循环是3-上循环,这部分解决了Kadison的高维局部上循环问题. 第二章......
本文研究Pontrjagin空间上的算子代数.讨论了一般算子代数的形式问题;JC*-代数的抽象定义;JC*-代数的C*-等价性与算子代数的对称理想......
泛函分析是近现代数学的重要分支.算子代数是泛函分析的核心内容之一,它的基本内容是C*-代数与von Neumann代数.内积空间中的内积从......
本篇硕士论文主要研究了几个dean环的子类,进而得到了dean性的进一步刻画,从而把clean性和算子代数中的拟polair性质联系了起来,得到......
矩阵代数是代数学的一个重要研究领域,它在计算机、图论、经济、工程、控制等许多方面都有应用,保持问题是矩阵代数中一个重要的研究......
算子代数分为自伴算子代数和非自伴算子代数两大类。相对于自伴算子代数,非自伴算子代数更年轻,数学现象更丰富,是一个非常活跃的研究......
非自伴算子代数是算子代数理论的重要分支,而自反算子代数又是研究非自伴算子代数的主要内容。自从60年代J.Ringrose开始研究套代数......
本文主要研究算子代数上的Lie映射和Lie理想. 第一节介绍了一些基本概念,问题背景和主要研究内容. 第二节研究了Banach空间上所......
算子代数理论产生于20世纪30年代,随着这一理论的迅速发展,它已成为现代数学中的一个热门分支,并与量子力学,非交换几何,线性系统和控制......
算子代数理论产生于20世纪30年代,随着这一理论的迅速发展,现在这一理论已成为现代数学中一个热门分支.它与量子力学、微分几何、线性......
全文分为三章. 第一章证明了多项式代数C[z]到多项式代数自由积c[x]*C[y]内的每个局部1-上循环是1-上循环,即C[x]到C[x]*C[y]内的......
算子代数间的局部映射问题主要是研究算子代数间的映射在每一点的局部性质(如局部导子,局部自同构,局部等距等)能否决定该映射的某种......
强极大TAF代数是一类重要的非自伴算子代数,而它的D-模就是此类代数本身的基本构成元素,所以对强极大TAF代数的D-模的研究是一件非常......
算子代数的研究源于Hilbert空间中有界线性算子组成的*代数。它的研究主要分为两个方面:一方面是讨论其代数的结构问题;另一方面是讨......
本学位论文主要研究算子代数间的映射理论,涉及Banach代数和C*-代数上的n-同态、保n-零积映射和局部n-同构等.全文共分三章: 第一......
本文主要研究可分Hilbort空间H上的效应代数E(H)及某些C*-代数的效应代数间的映射问题,涉及局部映射、2-局部映射,态射等.全文共分三......
交不可约理想在非自伴算子代数的研究中扮演着重要角色。本文首先研究了套代数直和的交不可约理想,用矩阵单元给出了交不可约理想的......
本文主要研究(弱)群余环的基本结构及其性质,作为应用,我们讨论了它在Morita关系和Galois理论等方面的结果,分为六章: 第一章简要介绍......
分类对数学研究有着特别重要的意义。近年来,对C*—代数分类研究是当前国际算子代数学术界极为关注的热点研究问题之一。并取得了许......
本文主要研究套代数上的保ξ-Lie乘积的映射及标准子代数上的中心化子,全文共分四节。第一节介绍了一些基本概念,问题背景和主要研究......
顶点算子代数是一个新兴的数学分支,起源于物理学。二十世纪六十年代后期,物理学中出现了一种新的理论,即弦理论。为了描述弦的传播,物......
在量子理论中,“两个可观测量是独立的”是很重要的术语,基于此,R.Haag在算子代数中引入了C*独立的定义,这样算子代数独立性成为算子代......
在经典的概率论中数学期望刻画了随机变量取值的某种平均,并且具有重要的线性性质,在此框架下,有重要的大数定律和中心极限定理.彭......
近年来,算子代数中对ξ-Lie导子的刻画以及揭示ξ-Lie导子之间关系的问题逐渐引起了人们越来越多的关注和研究兴趣,也出现了很多研究......
对定义在算子代数上的线性映射或可加映射保持性质的刻画一直是上个世纪数学理论界最受欢迎的研究课题。这其中值得注意的研究成果......
导子是算子代数和算子理论中比较活跃的、有着重要的理论和应用价值的研究课题.近几十年来,关于各类导子的研究迅速发展,有了许多新......
学位